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Abstract

Background: The binary similarity and dissimilarity measures have critical roles in the processing of data consisting
of binary vectors in various fields including bioinformatics and chemometrics. These metrics express the similarity
and dissimilarity values between two binary vectors in terms of the positive matches, absence mismatches or
negative matches. To our knowledge, there is no published work presenting a systematic way of finding an
appropriate equation to measure binary similarity that performs well for certain data type or application. A proper
method to select a suitable binary similarity or dissimilarity measure is needed to obtain better classification results.

Results: In this study, we proposed a novel approach to select binary similarity and dissimilarity measures. We
collected 79 binary similarity and dissimilarity equations by extensive literature search and implemented those
equations as an R package called bmeasures. We applied these metrics to quantify the similarity and dissimilarity
between herbal medicine formulas belonging to the Indonesian Jamu and Japanese Kampo separately. We assessed
the capability of binary equations to classify herbal medicine pairs into match and mismatch efficacies based on their
similarity or dissimilarity coefficients using the Receiver Operating Characteristic (ROC) curve analysis. According to the
area under the ROC curve results, we found Indonesian Jamu and Japanese Kampo datasets obtained different ranking
of binary similarity and dissimilarity measures. Out of all the equations, the Forbes-2 similarity and the Variant
of Correlation similarity measures are recommended for studying the relationship between Jamu formulas and
Kampo formulas, respectively.

Conclusions: The selection of binary similarity and dissimilarity measures for multivariate analysis is data
dependent. The proposed method can be used to find the most suitable binary similarity and dissimilarity
equation wisely for a particular data. Our finding suggests that all four types of matching quantities in the
Operational Taxonomic Unit (OTU) table are important to calculate the similarity and dissimilarity coefficients
between herbal medicine formulas. Also, the binary similarity and dissimilarity measures that include the negative
match quantity d achieve better capability to separate herbal medicine pairs compared to equations that exclude d.
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Background

Binary features have been commonly used to represent a
great variety of data [1-3], expressing the binary status
of samples as presence/absence, yes/no, or true/false. It
has many applications in the bioinformatics, chemo-
metrics, and medical fields [4-19], as well as in pattern
recognition, information retrieval, statistical analysis,
and data mining [20, 21]. The choice of an appropriate
coefficient of similarity or dissimilarity is necessary to
evaluate multivariate data represented by binary feature
vectors because different similarity measures may yield
conflicting results [22]. Choi et al. [23] collected binary
similarity and dissimilarity measures used over the last
century and revealed their correlation through the
hierarchical clustering technique. They also classified
equations into two groups based on inclusion and exclu-
sion of negative matches. Consonni & Todeschini [1]
proposed five new similarity coefficients and compared
those coefficients with some well-known similarity coef-
ficients. Three of the five similarity coefficients are less
correlated with the other common similarity coefficients
and need an investigation to understand their potential.
Meanwhile, Todeschini et al. [24] reported an analysis of
44 different similarity coefficients for computing the
similarities between binary fingerprints by using simple
descriptive statistics, correlation analysis, multidimen-
sional scaling Hasse diagrams, and their proposed
method ‘atemporal target diffusion model’.

Nowadays, the utilization of herbal medicines, ie.
Indonesian Jamu, Japanese Kampo, traditional Chinese
medicine (TCM), and so on [25], are becoming popular
for disease treatment and maintaining good health. In
case of Indonesian Jamu, each Jamu medicine is pre-
pared from a single plant or a mixture of several plants
as its ingredients. The National Agency of Drug and
Food Control (NA-DFC) of Indonesia supervises the
production of Jamu medicines before its release for pub-
lic use. Up to 2014, there were 1247 Jamu factories in
Indonesia [26]. They have concocted a lot of Jamu for-
mulas with various efficacies. Consequently, the studies
of Jamu formulas have become an interesting research
topic in the last few years. It may be related to the prob-
lems of the Jamu philosophy, systematization of Jamu, or
phytochemistry. In the Jamu studies, the relationships
between plants, Jamu, and efficacies lead to determine
important plants for every disease class using global
and local approaches [4, 5, 27]. In addition, Kampo
formulas are traditional medicines from Japan. These
are generally prepared by combination of crude
drugs. In total, 294 Kampo formulas are listed in the
Japanese Pharmacopoeia of 2012 and it can be used
for self-medication [28]. Currently, many researchers
have done Kampo studies to unveil the complex
systems of Kampo medication and to reveal the
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scientific aspect of its relevance to modern health-
care. In Jamu and Kampo studies, herbal medicine
formula and plant/crude drug relations are repre-
sented as binary feature vectors, denoting whether a
particular plant is used or not as an ingredient.

The relationships between Jamu formulas, as well as
Kampo formulas and other herbal medicines, are not
only reflected by the efficacy similarity but also by the
ingredient similarity. One Jamu formula can be sug-
gested as an alternative to the other one if they have
relatively similar ingredients. For mathematical analysis,
each Jamu formula is represented as a binary vector
using 1 to indicate the presence of a plant and 0 other-
wise. However, each Jamu formula usually uses a few
plants. Thus, most of the Jamu vectors contain a few 1 s
and many 0 s. Consequently, the number of plants that
are used simultaneously in Jamu pairs is much smaller
than the number of plants that are not used simultan-
eously as Jamu ingredients. Therefore, in order to find
relatively similar Jamu formulas, the high number of
negative matches might influence the calculation of bin-
ary similarity or dissimilarity between Jamu pairs. On
the other hand, there is no guarantee that negative co-
occurrence between two entities is identical [29]. Hence,
it is necessary to examine the binary similarity and dis-
similarity coefficients of Jamu formulas to determine the
appropriate measurement for finding a suitable mixing
alternative of a target crude drug.

Currently, there are several methods to measure the
quality of classifiers [30, 31] such as the Receiver Oper-
ating Characteristic (ROC) curves [32, 33], Precision-
Recall (PR) curves [33, 34], Cohen’s Kappa scores [35,
36], and so on. An ROC curve is a very powerful tool for
measuring classifiers’ performance in many fields, espe-
cially in the machine learning and binary-class problems
[37]. The purpose of ROC analysis is similar to that of
the Cohen’s Kappa, which is mainly used for ranking
classifiers. The ROC curve conveys more information
than Cohen’s Kappa in a sense that it can also visualize
the performance of a classifier by a curve instead of
generating just a scalar value. In this study, we
propose a method to select the most suitable simi-
larity measures in the context of classification based
on False Positive Rates (FPRs) and True Positive
Rates (TPRs) by using ROC curve analysis. We dis-
cuss the step-by-step development of this method by
applying it to assess the similarity of herbal medi-
cines in the context of their efficacies. Initially, we
gathered 79 binary similarity and dissimilarity equa-
tions. Some identical equations were eliminated in the
preliminary step. Subsequently, the capability of bin-
ary measures to separate herbal medicine pairs into
match and mismatch efficacy groups was assessed by
using the ROC analysis.
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illustrates data representation and also the procedure of

The proposed method leads to the selection of a suitable  our experiment.

equation such that when two herbal medicine formulas

belong to the same efficacy group, their ingredient Datasets

similarity measured by the equation becomes higher in  We used 3131 Jamu formulas collected from NA-DFC
the global context of a large set of formulas. Figure 1  of Indonesia [4, 5, 27], which comprise of 465 plants.
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Fig. 1 An illustration of the experimental flow. This figure also illustrates representation of plant, herbal medicine formulas and efficacy relations
as two-dimensional matrix. a Format of the input data representing Jamu-plant relations and the OTUs expression of a Jamu pair. b Reducing the
candidate equations. ¢ The ROC analysis
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Thus, Jamu vs. plant relations were then organized as a
3131x465 matrix (Fig. 1la). Jamu formulas were repre-
sented by binary vectors, which express the binary status
of plants as ingredients, 1 (presence) and O (absence).
Each Jamu formula consists of 1 to 26 plants, with aver-
age 4.904, standard deviation 2.969 and the set union of
all formulas consists of 465 plants. Each Jamu formula
corresponds to one or more efficacy/disease classes.
Total 14 disease classes are used in this Jamu study, of
which 12 classes are from the National Center for Bio-
technology Information (NCBI) [38]. The list of disease
classes are as follows: blood and lymph diseases (E1),
cancers (E2), the digestive system (E3), female-specific
diseases (E4), the heart and blood vessels (E5), diseases
of the immune system (E6), male-specific diseases (E7),
muscle and bone (E8), the nervous system (E9), nutri-
tional and metabolic diseases (E10), respiratory diseases
(E11), skin and connective tissue (E12), the urinary sys-
tem (E13), and mental and behavioral disorders (E14).
Corresponding to 3131 Jamu formulas, there can be
(3,131x3,130)/2 = 4,900,015 Jamu pairs.

For the purpose of comparison, we created four ran-
dom matrices as the same size as Jamu-plant relations
by randomly inserting 1 s and O s. In three of the ran-
dom datasets, the numbers of 1 s are 1, 5 and 10% of
465 plants (called as random 1%, random 5%, and ran-
dom 10%). In the case of the other dataset, we randomly
inserted the equal number of 1 s in every row as it is in
the original Jamu formulas (called as random Jamu). We
also applied our proposed method into Kampo dataset
[28]. This dataset is presented as a two-dimensional
binary matrix with rows and columns representing
Kampo formulas and crude drug ingredients, respect-
ively. Kampo dataset is composed of 274 Kampo formu-
las and each formula consists of 3 to 19 crude drugs,
with average 8.923, standard deviation 3.885, and the set
union of all formulas consists of 227 crude drugs. Then,
each Kampo formula is classified into deficiency or ex-
cess class, according to Kampo-specific diagnosis of pa-
tient’s constitution.

Flow of the experiment

The binary similarity (S) and dissimilarity (D) measure
between a herbal medicine pair is expressed by the Op-
erational Taxonomic Units (OTUs as shown in Fig. 1a)
[39, 40]. Concretely, let two Jamu formulas be described
by two-row vectors J; and J; each comprised of M vari-
ables with value 1 (presence) or 0 (absence). The four
quantities a, b, ¢, d in the OTUs table are defined as fol-
lows: a is the number of features where the values for
both j; and j; are 1 (positive matches), b and c¢ are the
number of features where the value for j; is 0 and j; is 1
and vice versa, respectively (absence mismatches), and d
is the number of features where the values for both j;
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and j; are 0 (negative matches). The sum of a4 and d rep-
resents the total number of matches between j; and jj
the sum of b and c represents the total number of mis-
matches between j; and j;. The total sum of the quan-
tities in the OTUs table a + b + ¢ + d is equal to M.

We collected equations to measure similarity or
dissimilarity between binary vectors from literature
[1, 3, 20, 21, 23, 24, 29, 40-62], listed as Eqgs. 1-79
in Table 1. The binary similarity and dissimilarity
equations were represented by four quantities, i.e. a,
b, ¢ and d. We also implemented these 79 equations
as an R package, called bmeasures. The bmeasures
package is available on Github and can be installed
by invoking these commands: install.packages
(“devtools”), library(“devtools”), install
github(“shwijaya/bmeasures”), library(“b-
measures” ). The installation of bmeasures package was
tested on R release 3.2.4 and the devtools package ver.
1.11.0. Initially, we measure the similarity and dissimilarity
coefficients between herbal medicine pairs by using 79
equations. Then, the resulted similarity/dissimilarity coef-
ficients are used for further analysis. Our experimental
procedure can be divided into two major steps, which we
discuss in the following segments:

Step 1. Reducing the candidate equations

The binary similarity and dissimilarity equations were
evaluated to eliminate duplications. When two or more
equations can be transformed into the same form by al-
gebraic manipulations, only one of them is kept for fur-
ther analysis. We also removed equations from our
analysis that produce infinite/NaN values or indetermin-
ate forms while applying to measure similarity and dis-
similarity using all datasets.

Hierarchical clustering of the remaining equations was
then done with an aim to further narrow down the num-
ber of candidate equations and to evaluate the closeness
between equations. After we obtained the similarity/dis-
similarity coefficients between herbal medicine pairs for
each equation, we clustered those equations based on its
similarity/dissimilarity coefficients using Agglomerative
hierarchical clustering with Centroid linkage (Fig. 1b)
[50, 63—65]. The Euclidean distance (Eq. 80) was used
to measure the distance between two equations, k
and /, that is:

= T )0

where s,,,,(k) and s,,,(I) are the similarity/dissimilarity
values between corresponding herbal medicine pair
using equations k and / respectively, N is the total num-
ber of herbal medicine formulas, and d, is the distance
between equation k and . The cluster centroid is the
average values of the variables for the observations (in

(80)
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Table 1 List of 79 binary similarity and dissimilarity measures
Eq. IDs Equations References Note
1 Shaccard = 777c [1, 20, 21, 23, 24, 29, 4043, 45-50, 55]
2 Spice-2 = 53%5¢ (20, 21, 47, 48]
3 Spice-1/Czekanowski = ﬁ [3, 23, 24, 29, 40-42, 44-47, 49, 50, 55] wak
4 S3W—laccard = ﬁ [23, 24, 43, 47]
5 Shelli = (51T (23, 40, 54] *
6 SsokalSneath-1 = 733673 [1, 23, 24, 40, 45, 47, 55]
7 SsokalMichener = % [1, 3,20, 21, 23, 24, 29, 40-42, 45, 46, 48-50]
8 SsokalSneath— = % [1, 23, 24, 40, 45, 49, 50, 55]
9 SRogerTanimoto = % [20, 21, 23, 24, 29, 40, 41, 45, 46, 48-50, 55, 56]
10 Sraith = 72£9205 23, 24, 56, 57)
1 SGowerLegendre = #&Hd [23, 24, 58] *
12 Sintersection = a [23, 47]
13 S/ﬂnerprodu(r =a+d [23] FHE
14 SkussellRao = F7prerd [1,3, 20, 21, 23, 24, 29, 40, 41, 45, 47-50, 55, 56)
15 Dramming = b+ ¢ [23, 48, 59]
16 Deyeid = Vb + ¢ [23]
17 23, 60 *

DSquared—euc//’d = (b + C)z [ ]
18 DCanberra = (b + C)% 23] *
19 Dutannattan =0+ ¢ [23] *
20 Dwtean-Manhattan = % [23, 55] KX
21 Deéiybrock=b+ ¢ [23] *
22 Duinkowski = (b + C)% [23] M

— b- *XK
23 D\/ar/' - Wm [23, 61]
2
24 Dsizepifference = % (23]
()2
% DShapeD/’fference = % [23]
26 DParremD/fference = ﬁ [23]
27 DLanceW/'///’amS = Zai%ﬂ [237 61]
28 DBrayCum‘s = ﬁ [23] *
29 [23]
N —_ _ a
DHe///nger =2 (] 7(a+b)(a+c)>
_ _ a
DChord = 2 (1 ’—vm(a-#b)(a-;-c))
— a
31 SCosme - 7(a+b)(a+c) [24, 55]
32 Scilberwelis = loga—logn—log (atfb)* log (U?‘FC) [23, 45] %
= _a %

33 Sochiai-1 oo (23, 24, 29, 40, 41, 49, 55, 56]
34 Srorbes—1 = TGFB)aT) [23, 24, 40, 45, 47, 55]
35 n(a-0.5)° [23, 24, 55]

Skossum = @+b)(a+o)
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Table 1 List of 79 binary similarity and dissimilarity measures (Continued)

36 Ssorgetel = (GrEgE (23, 24, 40, 45]
37 Shountford = m [23, 24, 40, 45] **
— a *
38 SOrsuka = ((a+b)(a+5))05 [23, 46]
39 SMcConnaughey = % [23, 40, 45, 55]
_ na-(a+b)(a+q)
40 Stawid = 23+(Z+b)(2+[c) (23,431
41 Iy - SQatb+o) [23, 40, 45, 46, 49, 55] e
Kulczynski-2 = (a+b)(a+c)
42 SDererKroebe/ = % <# + GLJFC) [23, 40, 45}
43 Sohnson = g'ﬁ + GLH [23, 24, 40, 45, 51] FHE
44 . _adbe 23,24, 55
SDenms (a+0) (@ t<) [ ]
45 SS/‘mpmn = m [23, 24, 40, 45, 55]
46 SeraunBanquet = TraxiatbaTe) (23, 24, 40, 45, 47
47 SFagerMcGowan = \/(G+Z)(a+c) - max(a;b‘aJrc) [23' 45]
_ —(a+b)(a+c)
48 Skorbes—2 = nmm(aTb,anrc)—(aer)(aJrc) (23, 45]
49 S B s o ) [1, 24, 40, 45)
SokalSneath—4 = 7
50 =—_ a+d 23
SGoner (@) (a+o)(b+d)(cd) (23]
51 Iy 2 n(ad—bc)? [23, 40, 45]
Pearson-1 = X" = (@35)(a+0)(c+d) (6+)
52 PRy (23, 45]
Spearson-2 = (W)
53 3 23] *%
Spearson-3 = (ﬁ)z
where p=-———0dbc____
(a+b)(a+c)(b+d)(c+d)
54 _ ad—bc 20, 21, 23, 24, 40, 45
SPsarsonHeron—W (a+b)(a+7c)(b+d)(c+d) [ 1
= SpearsontHeron—2 = COS(\/(:—d+b\C/b—C> [23, 45]
56 Ssokalsneath—3 = 2 23, 40, 45, 55) o
— d
57 SSokalsneath-5 = —(a+b)(a+c)((]b+d)(c+d)°5 [1, 23, 24, 40, 45]
58 S = V2(ad—be) [23, 45] x>
Cole = (ad—b0)—(a+b)(a10) (b+a)(c+ )
59 1 n(lad-be|-2)° [23, 40, 53, 55]
Ssties = 10910 Grpyara e )
60 R ad 23,29, 49 *
Sochiai-2 (a10)(a+0) (o1d)(crd) [ ]
61 Syiteq = 2425 [20, 21, 23, 24, 40, 41, 45, 46, 48, 55]
62 Dyuieg = 725 [23]
63 Sy = Vad—/bc [3, 23, 24, 40, 45]
Yulew Vad+vbe
64 Skulezynski-1 = poe 3, 20, 21, 23, 45-50, 55] o
65 Stanimoto = GTR)T(arera [1, 23, 24, 55] *
66 SDlsperson = % [23, 24]
67 Sk _ (atd)-(b+9) [3, 23, 40, 45, 46, 49, 50, 55] o
amann a-+btc+d
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Table 1 List of 79 binary similarity and dissimilarity measures (Continued)
68 — __AMad-b) 23, 24, 40, 45, 52
SMlchae/ = (a+d)z+(b+c)z ! ]
69 SGoodmanKruska/ = ;N:UO/ [23] **
whereo = max(a, b) + max(c, d) + max(a,c) + max(b,d)
0 = max(a+c,b+d) + max(a+b,c+d)
70 SAnderberg = % (23] **
/1 SBaron/'—UrbamBuser—1 = —\/G%/Eif”[ [23, 24, 40, 45, 55, 56, 62]
72 S _ Vad+a-(b+q) [23, 24, 40, 45, 62] o
Baroni—UrbaniBuser—2 — Vad+atbtc
73 SPeuce = % [23v 45] o
74 _ _n’(na—(a+b)(a+0)) 23
& STaramu/a = :E:: = ?(&iii; [23]
76 . [23] .
SAmp/e = cbl) = fégiz))‘
(c+d)
77 SDer/vedpuggp,—Rao = }zgz:ii; (1, 24]
78 SDerived,amw = % “’ 24]
79 log(1+ad)-log(1+bc) [1,24]

SVarUfCone/ar/on = 109 (1412 /4)

S is similarity measure, D is dissimilarity measure, *means algebraically redundant, **means produce infinite/NaN coefficients or indeterminate forms, ***means grouped
in the same cluster with zero or nearly to zero distance, n is a constant (n=M=a+b+c+d)

the present case equations) in that cluster. Let Xg, Xy
denote group averages for clusters G and H. Then,
the distance between cluster centroids is calculated
using Eq. 81.

dcentroid(G7H) = ||)_(G_YHH2 (81)

where X is the centroid of G by arithmetic mean Xg =
tz;ix@ [2, 65, 66]. We implemented the clustering
process using hclust function in R. At each step, the
cluster centroid was calculated to represent a group of
equations in the clusters. Furthermore, two equations or
clusters are merged for which the distance between the
centroids is the minimum until all equations are merged
into one cluster.

We performed the hierarchical clustering process
twice, first to reduce the candidate equations for which
the distance between equations measured by Eq. 80 is
zero or nearly zero and secondly to evaluate the com-
bined characteristic of a group of equations. Mean cen-
tering and unit variance scaling was applied to the
similarity/dissimilarity coefficients before the clustering
process.

Step 2. ROC Analysis of selected equations

The effectiveness of similarity/dissimilarity measur-
ing capability of the selected equations was evaluated
by means of the ROC curve (Fig. 1c) [67, 68]. For
ROC analysis, we divided all the herbal medicine

pairs into match and mismatch efficacy classes and
used the corresponding distributions with respect to
similarity scores to calculate FPRs and TPRs. The
ROC curve was created by selecting a series of
threshold to generate FPR and TPR. FPR is the pro-
portion of false positive predictions out of all the
false data and TPR is the proportion of true positive
predictions out of all the true data, defined by
Eq. 82 [67-69]:

FPR=FP/(FP+TN)  TPR=TP/(TP + FN)

(82)

where true positive (7P) is the number of herbal medi-
cine pairs correctly classified as positive, true negative
(TN) is the number of pairs correctly classified as nega-
tive, false positive (FP) is the number of pairs incorrectly
classified as positive, and false negative (FN) is the num-
ber of pairs incorrectly classified as negative. We defined
and compared the performance of good equations by
using the minimum distance of the ROC curve to the
theoretical optimum point and by using the Area Under
the ROC Curve (AUC) analysis [70]. The minimum dis-
tance between the ROC curve and the optimum point
was measured as the Euclidean distance. The minimum
distance can also be computed by TP TN, FP, and FN
values corresponding to selected similarity thresholds i
using the following formulation:
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Min. dist
= mini S threshnlds\/(FPi/(TNi + FPz))2

+ (FN,/(TP; + FN;))?
(83)

Results and discussion

Preliminary verification of the equations

In the preliminary step, we removed 12 equations de-
noted by *’ in Table 1 because each of them can be rec-
ognized as identical to one or more other equations by
only algebraic manipulations such as linear transform-
ation. From the seven groups of redundant equations
shown in Table 2, we included Sjaccards Spice-1/Czekanowskis
SSokal&Sneath»2) DHamming’ DLance&\X/illiams) SCosine and
Ssokal&sneath.s in our analysis and therefore, we were
left with 67 equations at this stage. Next, we clustered
the 67 equations to reduce the number of equations
using Jamu and Kampo datasets. During the clustering
process, we eliminated 11 equations indicated by ** in
Table 1 that produced infinite/NaN values or indetermin-
ate forms while applied to all datasets. Such conditions
can be reached when denominator of an equation be-
comes equal to 0, i.e. the values of b and c in the Mount-
ford and Peirce similarities (Eq. 37 and Eq. 73) are 0 if two
formulas use exactly the same ingredients.

The clustering of 56 equations in the context of Jamu
data is shown in Fig. 2. The distances among equations
belonging to individual clusters indicated as 1 to 7 in
Fig. 2 are equal or nearly equal to 0. In other words,
those equations have similar characteristics when
generating binary similarity/dissimilarity coefficients for
Jamu data. By using the clustering result, we reduced 11
equations denoted by “** in Table 1 because they were

Table 2 Groups of identical equations
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related to other equations in the same cluster e.g. we
eliminated Spaoni-Urbani&Buser2 (EQ. 72) because it is
similar to Sparoni-Urbani&Buser-1 (EQ- 71). A careful obser-
vation of equations belonging to the same cluster in the
group IDs 1 to 7 in Fig. 2 implies that one equation can
be transformed to another just by adding or multiplying
by constants (Table 3). For example, we can represent
SBaroni»Urbani&Buser»Z as [(2 X SBaroni»Urbani&Buser»l) - 1]'
The excluded equations based on the clustering process
are as follows: sDice»l/Czekanowski (Eq‘ 3)! SInnerproduct (Eq
13)’ SRussellg(Rao (Eq' 14)’ DMean»Manhattan (ECL 20)’ DVari
(Eq' 23)’ DChord (Eq' 30)’ SI(ulczynski»2 (ECL 41)’ sDriver
&Kroeber (Eq‘ 42)1 S]ohnson (Eq' 4'3)’ SHamann (Eq' 67)1
and Sparoni-Urbani&Buser-2 (Eq. 72). In case of Kampo
dataset, the clustering results also identified the same
equations belong to the same cluster with zero or
nearly to zero distance. Therefore, both datasets elimi-
nated the same equations, indicated by “***” in Table 1,
and also obtained the same number of selected equa-
tions (45 binary similarity and dissimilarity measures)
for further analysis. Hence, among the 79 binary
similarity dissimilarity measures used over the last cen-
tury, there are only 45 unique equations that produce
different coefficients by capturing different informa-
tion. Additionally, these binary measures satisfy the
symmetry property [71], ie. in case of such equations
d(x,y) =d(y, x) or S(x,y) = S(y, x).

We applied hierarchical clustering again to these 45
equations to give a better understanding of relationships
between selected equations. In general, Jamu and Kampo
data generated more or less the same heatmap. The re-
sulted dendrogram together with the heatmap of Jamu
data are shown in Fig. 3. We can roughly identify four
main clusters (I, II, III, and IV). The hierarchical

Groups Eliminated Equations Selected Equations
] Sweiti = (a+b) u+c) (Eq5) SD/ce—W/Czekanowsk/ Za+b+c (Eq.3)
’ 560W9/Legend/e = m (Eqﬂ ) SSoka ISneath—2 = ﬁ (Eq 8)
’ D i =b+c (Eq.

DSquwedfeu(//'d = (b + C)z (ECH 7) Hamming ( q >

Dcanbera = (b + C)% (Eq.18)

Dutanhattan = b+c (ECH 9)

DCiryb/ock =b+c (qun

1

Dutinkowski = (b + )7 (Eq.22)

N DB’WC‘”“ = ﬁ (Eq.28) DLancerH/amS = 2a+b+c (Eq 27)
— a _
5 SOch/al—W = (atb)at0) (Eq33) SCOSme (a+b)(a+5) (qu])
- a

Sotsuka = (@+0)(a+0)* (Eq-38>

6 Sochiai-2 = ad (Eq.60) Soralsneaths = ad - (Eq57)

(a+b)(a+c)(b+d)(c+d)

7 Stanimoto = m (Eq.65)

(a-+b)(a-+c) (b+d) (c+d)™°

Saccard = ﬁ (Eq])
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Fig. 2 Clustering of 56 binary similarity and dissimilarity measures in the context of Jamu data after removing algebraically redundant equations
and equations that produce invalid coefficients. The distances between equations belonging to the same clusters are zero or nearly zero, and we
select only one equation from each such cluster for the ROC analysis of the next step

clustering clearly separated the equations on the basis
whether they measure similarity or dissimilarity. Al-
though both similarity/dissimilarity measures may pro-
duce the same coefficient range, they work in the
opposite way. The higher the similarity between two
herbal medicine formulas, the higher the similarity coef-
ficients. On the other hand, the higher the similarity be-
tween two herbal medicine formulas the lower the
dissimilarity coefficients. Therefore, the agglomerative
clustering with centroid linkage performs well in the
process to separate similarity and dissimilarity equations.
All the equations belonging to clusters I and II are for

measuring dissimilarity whereas the equations belonging
to clusters III and IV are for measuring similarity. Con-
versely, the equations that include negative match quan-
tity d spread throughout all the clusters. This result
indicates that the equations cannot be grouped based on
the existence of negative match quantity d.

ROC analysis of selected equations

The ROC curves were created for each binary similarity/
dissimilarity equation to compare their performance.
Initially, we normalized the similarity and dissimilarity
coefficients, such that their minimum becomes 0 and
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Table 3 Transformation of an equation into another by adding or multiplying by constants (Group IDs correspond to clusters

in Fig. 2)
Group IDs Eliminated Equations Selected Equations®
1
— _ a . _ a . )
DChord = 2(1 (u+b)(a+c)) (Eq 30) = ﬁz (] (u+b)(a+c)) = ﬂDHe//rnger (EQ-29)
2 D/\/lean—/\Aanharran = m (Eq 20) Wﬂ(b + C) = 7DHWWYJW9 (EC” 5)
Dvan = g7z €EA23) = 217 (b + ¢) = 373 Driamming (EQ.15)
3 SkussellRao = m (Eq.14) = }70 = lSlnrersecr/on (Eq.12)
4 Sgamn,,u,bgn,‘guge,,z = % (Eq72) =2 \/—\/: Z -1 = [2 X SBaronFUrbanfBuserfW]‘(Eq]])
2a+b
5 Stumsti-2 = S (Eq.41) =1(3%+5%) = $Somon E43)
Sbriverkroeber = % (ﬁ + a+c) (Eq 42) = % #ﬂb + a+() S/ohnson (Eq 43)
—=_4a_ 4 a
Siohmson = a+b + a+c (Eq43) =14 (%) =1+ SMcConmaughey (Eq.39)
6 Spice- 1/Czekanowski = zg+b+c (Eq3) =2 zgberc =2 X Spie2 (EQ.2)
7 S/””efp’DdUU =a+d (Eq] 3) =M= g+b+c+d =M x SSOka/Ml(hener (Eq 7)
+d)—(b
SHamann = % (EOI467) = 2<0+Z#+g+d)7] = [2 X SSuka//\Aichener}*1 (Eq])

M is a constant (a+ b+ c+d)

maximum becomes 1, before using them to create the
ROC curves. In the case of equations that measure
dissimilarity, we transformed a normalized dissimi-
larity coefficient D to a similarity coefficient S for
the sake of comparison by using the following equation
S=1-D" [40, 41].

In the context of Jamu data, we started the ROC ana-
lysis of selected equations by classifying the Jamu pairs
into match and mismatch classes based on their effica-
cies. A Jamu pair belongs to the match class if the effi-
cacy of both the Jamu formulas of a pair is the same. On
the other hand, a Jamu pair belongs to the mismatch
class if the efficacies of the formulas of a pair are differ-
ent. The number of Jamu pairs in the match and mis-
match classes are 646,728 and 4,253,287 respectively.
Obviously, the number of Jamu pairs in the mismatch
class is much larger than that in the match class. This
imbalance is a challenge in assessment of the capability
of equations to separate Jamu pairs into match and mis-
match classes. In order to handle this condition, we cre-
ated 20 mismatch classes each equal to the size of the
match class by random sampling of the mismatch class
Jamu pairs according to bootstrap method [67]. Every
equation was then iteratively evaluated by using those
datasets as mismatch class data.

Our objective is to assess the capability of the
equations to separate the Jamu pairs into match and
mismatch efficacy classes based on their similarity coeffi-
cients using ROC analysis. In order to create an ROC
curve corresponding to an equation, we need the distri-
butions of match class and mismatch class Jamu pairs

with respect to their similarity values calculated by the
equation. We divided the range of the similarity coeffi-
cient into 100 equal intervals, and the lower limit of
each interval was considered as a threshold. Corre-
sponding to every threshold, 7P and FN were deter-
mined from the distribution of match class and FP and
TN were determined from the distribution of mismatch
class. In our case, TP and FP are the numbers of Jamu
pairs with the similarity value larger than or equal to
threshold, and FN and TN are the numbers of Jamu
pairs with the similarity value smaller than threshold.
FPR and TPR were then calculated for every threshold
using Eq. 82. We produced the ROC curve by plotting
the resulting FPR on the x-axis and TPR on the y-axis.
In perfect or ideal classification, the ROC curve follows
the vertical line from (0,0) to (0,1) and then horizontal
line up to (1,1). In the case of random data, the ROC
curve follows the diagonal line from (0,0) to (1,1). In the
case of real data, the ROC curve usually follows an
above diagonal line. The (0,1) is the optimum classifica-
tion point where FPR is zero and TPR is one and hence
the (0,1) point will be referred to as ‘optimum point’.
The performance of a classifier was assessed either by
measuring the minimum distance from the optimum
point to the curve or by measuring the AUC. In the case
of the minimum distance, the lower is the value of the
minimum distance the better is the performance of the
classifier. In the case of the AUC, the bigger is the AUC
value, the better is the performance of the classifier.

In order to assess the effectiveness of an equation
using the minimum distance, the ROC curve was



Wijaya et al. BMC Bioinformatics (2016) 17:520

Page 11 of 19

Color Key

the negative match quantity d is used in the equation
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L Dissimilarity
measures
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Fig. 3 The heatmap and dendrogram of remaining binary similarity and dissimilarity measures using Jamu data. The asterisk symbol (*) indicates

generated by using all of the Jamu pairs from match and
mismatch efficacies. The Euclidean distance metric was
used to measure the distance from the (0, 1) point to the
(FPR, TPR) points for all 45 selected equations. In
addition, we created 20 ROC curves for each equation
considering in each case the match class Jamu pairs and
one of the 20 different mismatch class samples. Thus,
we obtained 20 AUCs of the ROC curve for each equa-
tion and averaged those values to determine the overall
AUCs corresponding to an equation. The ROCR package
[72] was used to calculate the AUC values. Table 4
shows the results of ROC analysis and also Kappa scores
for Jamu data. The scatter plot of minimum distances
and mean of AUCs corresponding to 45 equations for
both datasets is shown in Fig. 4. Based on the scatter
plot generated using Jamu data in Fig. 4a, the 45

equations are empirically divided into 4 groups (C1, C2,
C3, and C4). The well-performing equations correspond-
ing to both approaches were obtained in C1, which con-
sists of Eqs. 48, 49, 54, 68, and 79. The Michael
similarity (Eq. 68) produces the lowest minimum dis-
tance, and the highest AUC is obtained by the Forbes-2
similarity (Eq. 48). The ROC curves generated using Mi-
chael and Forbes-2 similarities for all datasets are shown
in Fig. 5. As expected, the ROC curves corresponding to
all random datasets follow the diagonal line and that
corresponding to Jamu data follows the above diagonal
line. Most equations with the highest AUC values are
similarity-measuring equations and these equations be-
long to cluster III in Fig. 3. Out of these equations, the
Lance & Williams distance (Eq. 27) produces the highest
AUC value among dissimilarity-measuring equations.
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Table 4 The ROC analysis and Cohen’s Kappa score of Jamu
data. A value inside the bracket in the minimum distance and
mean Kappa columns represents the ranking of an equation if
we order based on respective columns. Standard deviations
from both metrics are relatively similar and small, those are 2-
4x10™ for mean AUCs and 0-6x10™ for mean of Kappa scores

No Equations S/ Incl.  ROC analysis Cohen's Kappa
D Mean AUCs  Min. distance  Mean Kappa

1 Eq. 48 S Y 0616 0.587 (3) 0.088 (13)
2 Eq. 74 S Y 0613 0.599 (29) 0.024 (28)
3 Eq.49 Sy 0613 0.588 (4) 0.076 (15)
4 Eq. 54 S Y 0611 0.590 (5) 0.074 (19)
5 Eq. 44 S Y 0611 0.599 (19) 0.073 (21)
6 Eq.66 S Y 0611 0.599 (26) 0.023 (31)
7 Eq. 68 S Y 0610 0.583 (1) 0.024 (29)
8 Eq.79 S Y 0610 0.583 (2) 0.090 (11)
9 Eq.78 S 0.609 0.599 (28) 0.092 (8)
10 Eqg.46 S 0.609 0.599 (20) 0.065 (23)
11 Eq.01 S 0.609 0599 (10) 0.052 (24)
12 Eq.04 S 0.609 0599 (11) 0.089 (12)
13 Eqg.06 S 0.609 0.599 (12) 0.036 (27)
14 Eqg. 27 D 0.609 0.599 (14) 0.109 (7)
15  Eq.02 S 0.609 0.599 (8) 0.074 (20)
16 Eqg. 36 S 0.608 0.600 (31) 0.040 (25)
17 Eqg.29 D 0.608 0.599 (15) 0.076 (16)
18 Eq.31 S 0.608 0599 (16) 0.076 (17)
19 Eqg.57 S Y 0.608 0.599 (22) 0.076 (18)
20 Eq. 71 S Y 0.608 0.599 (9) 0.152 (6)
21 Eq.39 S 0.607 0599 (17) 0.078 (14)
22 Eq.62 D Y 0.606 0.599 (24) 0.185 (1)
23 Eqg.63 S Y 0.606 0.599 (25) 0.167 (5)
24 Eq.55 S Y 0.606 0599 (21) 0.180 (3)
25 Eq.61 S Y 0.606 0.599 (23) 0.183 (2)
26 Eq.40 S Y 0.605 0599 (18) 0.180 (4)
27 Eq.34 S 0.605 0.600 (30) 0.024 (30)
28 Eq.45 S 0.605 0.599 (7) 0.091 (10)
29 Eq.52 S Y 0.604 0.597 (6) 0.092 (9)
30 Eq.77 Sy 0.604 0599 (27) 0.067 (22)
31 Eq. 51 S Y 0.604 0602 (32) 0.039 (26)
32 Eq. 12 S 0.604 0.599 (13) 0.022 (32)
33 Eq. 10 S Y 0.556 0.656 (33) 0.014 (34)
34 Eq.35 S Y 0.546 0671 (34) 0.018 (33)
35 Eqg.59 S Y 0.545 0671 (35) 0.013 (35)
36 Eq.24 D v 0.529 0.860 (44) 0.000 (43)
37  Eq. 15 D 0.529 0.680 (39) 0.004 (42)
38 Eq.08 S Y 0.529 0.680 (37) 0.010 (39)
39 Eg.09 S Y 0.529 0.680 (38) 0.010 (36)
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Table 4 The ROC analysis and Cohen’s Kappa score of Jamu
data. A value inside the bracket in the minimum distance and
mean Kappa columns represents the ranking of an equation if
we order based on respective columns. Standard deviations
from both metrics are relatively similar and small, those are 2-
4x10™* for mean AUCs and 0-6x10™ for mean of Kappa scores
(Continued)

40 Eg.16 D 0.529 0.680 (40) 0.010 (38)
41 Eq.07 S 0.529 0.680 (36) 0.010 (37)
42 Eq.25 D 0.526 0.680 (41) 0.004 (41)
43 Eqg.26 D 0517 0.895 (45) 0.000 (44)
44 Eqg. 47 S 0515 0.684 (42) 0.005 (40)
45 Eqg. 50 S Y 0.466 0.754 (43) -0.008 (45)

The column "Incl. d" means the availability of negative match quantity d in the
equation (Yes/No)

We repeated our experiments also for Kampo data fol-
lowing the same procedures. The results of ROC analysis
and also Cohen’s Kappa using Kampo data are shown in
Table 5. In addition, the plot between minimum dis-
tances and mean AUCs of Kampo data is shown in
Fig. 4b. The remaining equations are clustered into 3
groups (C1, C2 and C3). The most suitable binary equa-
tions for classifying Kampo data were found in the clus-
ter C1, with Tarwid Similarity (Eq. 40) and Variant of
Correlation similarity (Eq. 79) producing the lowest
minimum distance and the highest mean AUCsS, respect-
ively, which are different from the top ranking equations in
case of Jamu data. Only 5 of top-10 well-performing equa-
tions corresponding to Jamu data matches with those cor-
responding to Kampo data with different order. These
results indicate different dataset produce different ranking
of equations and there is no superior equation that can
perform well for all datasets [73]. Each binary similarity
and dissimilarity equation has its own characteristics and
fits for a specific problem. Therefore, our proposed method
can be used to choose the appropriate equations wisely, de-
pending on the characteristics of the data to analyze.

In case of Jamu and Kampo pairs, the negative match
quantity d is much higher compared to the positive
match a and the absence mismatches b and c. One of
our objectives is to understand the effect of d in calcu-
lating similarity/dissimilarity coefficients between herbal
medicines. Among the equations that do not include d,
the Simpson similarity (Eq. 45) and the Forbes-1 similar-
ity (Eq. 34) produce the lowest minimum distance in
Jamu and Kampo data, respectively. Furthermore, the
Derived Jaccard similarity (Eq. 78) and the McCon-
naughey (Eq. 39) produce the highest AUC in Jamu data
and Kampo data. Out of 79 equations in Table 1, 46
equations use d in their expressions. Interestingly, the
equations that include d perform better in measuring
similarity/dissimilarity in both datasets. The best
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Fig. 5 The ROC curves of Michael and Forbes-2 similarities for Jamu and random datasets. a Michael similarity (Eq. 68). b Forbes-2 similarity (Eq. 48)




Wijaya et al. BMC Bioinformatics (2016) 17:520 Page 15 of 19

Table 5 The ROC analysis and Cohen’s Kappa score of Kampo data. A value inside the bracket in the minimum distance and mean
Kappa columns represents the ranking of an equation if we order based on respective columns

No Equations S/ Incl. ROC analysis Cohen’s Kappa
D a Mean AUCs SD mean AUCs Min. distance Mean Kappa SD mean Kappa

1 Eq. 79 S Y 0610 0.001 0.607 (9) 0.069 (14) 0.001
2 Eq. 55 S Y 0.609 0.001 0.604 (2) 0.106 (1) 0.001
3 Eq. 61 S Y 0.609 0.001 0.606 (5) 0.106 (2) 0.001
4 Eq. 63 S Y 0.609 0.001 0.606 (6) 0.099 (5) 0.001
5 Eq. 62 D Y 0.609 0.001 0.610 (16) 0.101 (4) 0.001
6 Eq. 48 S Y 0.608 0.001 0.608 (12) 0.084 (9) 0.001
7 Eqg. 49 S Y 0.608 0.001 0607 (11) 0.069 (15) 0.001
8 Eq. 44 S Y 0.608 0.001 0.610 (15) 0.065 (21) 0.001
9 Eq. 54 S Y 0.607 0.001 0.607 (8) 0.066 (20) 0.001
10 Eqg. 39 S 0607 0.002 0.607 (10) 0.070 (13) 0.001
" Eq. 57 S Y 0.606 0.001 0611 (17) 0.067 (18) 0.000
12 Eq. 71 S 0.606 0.001 0.608 (14) 0.092 (6) 0.001
13 Eq. 51 S Y 0.606 0.001 0612 (18) 0.040 (27) 0.001
14 Eq. 31 S 0.606 0.001 0.612 (20) 0.068 (17) 0.001
15 Eqg. 29 D 0.606 0.001 0612 (19) 0.068 (16) 0.001
16 Eqg. 52 S Y 0.606 0.001 0.608 (13) 0.078 (10) 0.001
17 Eq. 36 S 0.606 0.001 0612 (21) 0.042 (26) 0.001
18 Eq. 74 S Y 0.605 0.002 0.606 (4) 0.037 (29) 0.001
19 Eq. 45 S 0.605 0.001 0606 (7) 0.086 (8) 0.001
20 Eq. 04 S 0.605 0.001 0.615 (29) 0.075 (12) 0.001
21 Eq. 27 D 0.605 0.001 0615 (30) 0.091 (7) 0.001
22 Eqg. 06 S 0.605 0.001 0618 (32) 0.032 (40) 0.001
23 Eq. 02 S 0.604 0.001 0.615 (28) 0.065 (22) 0.001
24 Eq. 34 S 0.604 0.001 0.605 (3) 0.035 (36) 0.001
25 Eq. 01 S 0.604 0.001 0616 (31) 0.047 (24) 0.001
26 Eq. 40 S Y 0.604 0.001 0.604 (1) 0.102 3) 0.002
27 Eq. 78 S 0.602 0.001 0614 (25) 0.075 (11) 0.001
28 Eq. 46 S 0.600 0.001 0613 (23) 0.055 (23) 0.001
29 Eq. 68 S Y 0.597 0.001 0612 (22) 0.036 (32) 0.001
30 Eq. 66 S Y 0.597 0.001 0614 (24) 0.035 (37) 0.001
31 Eqg. 59 S Y 0.591 0.001 0614 (26) 0.043 (25) 0.001
32 Eq. 35 S Y 0.590 0.001 0615 (27) 0.036 (35) 0.001
33 Eq. 12 S 0.590 0.001 0621 (33) 0.034 (38) 0.000
34 Eq. 77 S Y 0.589 0.001 0621 (34) 0.066 (19) 0.000
35 Eq. 10 S Y 0.584 0.001 0.630 (35) 0.036 (31) 0.001
36 Eq. 26 D Y 0.568 0.001 0.653 (43) 0.015 (43) 0.001
37 Eq. 24 D Y 0.564 0.001 0651 (42) 0.017 (42) 0.001
38 Eq. 25 D Y 0.564 0.001 0.650 (36) 0.032 (41) 0.001
39 Eq. 08 S Y 0.564 0.001 0651 (38) 0.036 (33) 0.001
40 Eq. 16 D 0.564 0.001 0651 (41) 0.037 (30) 0.001
41 Eq. 15 D 0.563 0.001 0.651 (40) 0.032 (39) 0.001
42 Eq. 07 S Y 0.563 0.001 0651 (37) 0.036 (34) 0.001



Wijaya et al. BMC Bioinformatics (2016) 17:520

Page 16 of 19

Table 5 The ROC analysis and Cohen’s Kappa score of Kampo data. A value inside the bracket in the minimum distance and mean
Kappa columns represents the ranking of an equation if we order based on respective columns (Continued)

43 Eq. 09 S Y 0.563 0.001 0.651 (39) 0.037 (28) 0.001
44 Eq. 47 S 0518 0.001 0.683 (44) 0.010 (44) 0.001
45 Eq. 50 S Y 0.501 0.001 0.702 (45) -0.004 (45) 0.000

The column "Incl. d" means the availability of negative match quantity d in the equation (Yes/No)

performing equations corresponding to minimum dis-
tance and mean AUCs for Jamu data are Eqgs. 68 and 48,
which include negative match quantity d. Likewise, the
best equations in the Kampo data (Eqs. 79 and 40) also
include negative match quantity d. Then, the top-5 well
performing equations corresponding to both datasets in-
clude d. If we also consider another metric to rank the
classifier performance, i.e. Cohen’s Kappa, we find a con-
sistent result. That is top-5 equations with the largest
Kappa score also include d (Table 4 and 5). It implies
the similarity between Jamu pairs and Kampo pairs are
influenced by the negative matches. This result supports
the findings of Zhang et al. [20] that all possible

matches, S; where i, j €{0,1}, should be considered for
better classification results. Moreover, the performance
measurement of binary similarity/dissimilarity equations
using the AUC of ROC curve is more preferable to the
minimum distance because this approach considers all
(FPR, TPR) points, not only a single point with mini-
mum distance to the optimum point.

For further insight into the matter, we examined the
performance of the equations for every disease class in
Jamu data separately using the same approach. We cre-
ated match and mismatch datasets for every disease class
using all Jamu pairs. The match class consists of Jamu
pairs with the same efficacy class and the mismatch class

Forbes-2 similarity

Min. Mean

ID Disease Disease classes . recognition
distance

rate
E6 Diseases of the immune system 0.330 0.805
- A- E2 Cancers 0.397 0.719
—a-E13 The urinary system 0.483 0.668
E8 Muscle and bone 0.501 0.646
E4 Female-specific diseases 0.529 0.630
—&— E9 The nervous system 0.542 0.616
-—— E14 Mental and behavioral disorders 0.570 0.619
--a-Ell Respiratory diseases 0.600 0.580
—— El Blood and lymph diseases 0.638 0.565
E3 The digestive system 0.641 0.559
E5 The heart and blood vessels 0.655 0.573
- 8-E10  [Nutritional and metabolic diseases 0.696 0.545
-e--E12 Skin and connective tissue 0.714 0.531
E7 Male-specific diseases 0.742 0.545

X indicates the optimum point of ROC curve where both FPR and TPR are 0
and 1, respectively.
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consists of Jamu pairs with different efficacy class but
one of the Jamu formulas in that pair has the same effi-
cacy class as the match class. To measure the AUC of
ROC curve, we created 20 mismatch classes each equal
to the size of the match class by using the bootstrap
method. Thus, we obtained 20 AUCs of the ROC curves
for each disease class and each equation, and we
averaged those 20 values to determine the overall AUCs
corresponding to a disease class and an equation
(Additional file 1: Table S1). Figure 6 shows the ROC
curves for every disease class using Forbes-2 similarity
coefficients. The immune system disease class (E6) pro-
duces the highest AUC score and the highest average of
AUCs (for all 45 equations). Moreover, the best classifi-
cation is obtained in case of immune system class indi-
cated by an arrow in Fig. 6, with the average of
recognition rate of 0.805. The relatively high recognition
rate of E6 class corresponds to our knowledge that the
disease of immune system class is a very specific disease
and utilization of the crude drug is restricted compared
to other disease classes. The minimum distance of an
ROC curve from the optimum point (expressed by Eq. 83)
indicates the difficulty of classification i.e. the higher the
minimum distance the more difficult it is to achieve a suc-
cessful classification. Therefore, when the minimum dis-
tance is close to zero, it implies that good classification of
the data is possible. In case of classification of Jamu for-
mulas concerning individual diseases, relatively lower
minimum distance was obtained for specific type of dis-
ease classes such as diseases related to E6 and the urinary
systems (E13), which indicates that very specific types of
medicinal plants are used to make such Jamu formulas.
On the other hand, the disease classes such as those re-
lated to digestive systems (E3) and nutritional and meta-
bolic diseases (E10) are caused by diverse factors and
therefore the corresponding Jamu formulas are made
using diverse types of plants resulting in relatively higher
minimum distance for these disease classes (Fig. 6).

Conclusions

Different binary similarity and dissimilarity measures yield
different similarity/dissimilarity coefficients, which in turn
causes differences in downstream analysis e.g. clustering.
Hence, determining appropriate binary similarity and dis-
similarity coefficients is an essential aspect of big data ana-
lysis in versatile areas of scientific research including
chemometrics and bioinformatics. In this study, we pre-
sented an organized way to select a suitable equation for
studying relationship between herbal medicine formulas
in Indonesian Jamu and Japanese Kampo. We started our
study by collecting 79 binary similarity and dissimilarity
equations from literature. In the early stages, we reduced
algebraically redundant equations and equations that pro-
duce invalid values or relatively similar coefficients when
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applied to our datasets. In addition, we eliminated some
equations based on agglomerative hierarchical clustering
because they were very closely related to other equations
in the same cluster. Finally, we selected 45 unique equa-
tions that produced different coefficients for our analysis.
The ROC curve analysis was then performed to assess the
capabilities of these equations to separate herbal medicine
pairs having the same and different efficacies. The experi-
mental results show that the binary similarity and dissimi-
larity measures that include the negative match quantity d
in their expressions have a better capability to separate
herbal medicine pairs than those equations that exclude d.
Moreover, we obtained different ranking of binary equa-
tions for different datasets, ie. Jamu and Kampo data.
Thus, this result indicates the selection of binary similarity
and dissimilarity measures is data dependent and we
should choose the binary similarity and dissimilarity mea-
sures wisely depending on the data to be processed. In
case of Jamu data, the biggest AUC value is obtained by
the Forbes-2 similarity. Conversely, the Variant of Correl-
ation similarity is recommended for classifying Kampo
pairs into match and mismatch classes. The procedure
followed in this work can also be used to find suitable bin-
ary similarity and dissimilarity measures under similar sit-
uations in other applications.

Additional file

Additional file 1: Table S1. The mean of AUCs between equations and
disease classes in Jamu data. (XLSX 50 kb)
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